
Improving Performance Portability and Software Productivity
with the ∇ Numerical Programming Language

CAMIER Jean-Sylvain
CEA, DAM, DIF, F-91297 Arpajon, France

The ∇ Specific Language

Nabla (∇) is an open-sourceDomain Specific Language (DSL)
introduced in [1] whose purpose is to translate numerical analy-
sis algorithmic sources in order to generate optimized code for
different runtimes and architectures.

Objectives & Roadmap

The objectives and the associated roadmap have been mo-
tivated since the beginning of the project with the goal to
provide a programming model that would allow:
• Performances. The computer scientist should be able

to instantiate efficiently the right programming model for
different software and hardware stacks.

• Portability. The language should provide portable
scientific applications across existing and fore-coming
architectures.

• Programmability. The description of a numerical
scheme should be simplified and attractive enough for
tomorrow’s software engineers.

• Interoperability. The source-to-source process should
allow interaction and modularity with legacy codes.

The ∇ Toolchain

Figure 1: Three parts of the ∇ Toolchain: Sources Analysis (Frontend), Opti-
mizations & Transformations (Middlend) and Generation Stages (Backends).

The backends hold the effective generation stages for different
targets or architectures: ARCANE [2], Multi-Processor
Computing framework (MPC) [3], CUDA, OKINA
(fully-vectorized), LAMBDA, (WIP: RAJA & UINTAH).

Main Proxy Applications Ported to ∇

Overview of the ∇ DSL
The ∇ language allows the conception of multi-physics applications, according to a logical time-triggered approach. Nabla embeds the
C language and follows a source-to-source approach. The method is based on different concepts: no central main function, a multi-tasks
based parallelism model and a hierarchical logical time-triggered scheduling.

Hierarchical Logical Time

Table 1: ∇ Logical Time Diagrams: b is the totally-ordered time-diagram
from a typical mini-application ported to ∇ with consecutive for-loops; c is the
diagram of a better partially-ordered numerical scheme.

a: b: c:

Table 2: ∇ LULESH Logical Timeline of ∇ LULESH (6= Point Of Views)

∇-Lulesh Results on Xeon-SNB & Haswell
Each figure presents cells-updates-per-µs for different runs:

Figure 2: Reference (ref.), Optimized (Optim.) and ∇ Lulesh Performances Tests
on Intel Xeon-SNB with the C/C++ Standalone OKINA+OpenMP Backend and
no-vec., SSE or AVX Intrinsics. Higher is better.

Figure 3: ∇-Lulesh Speedups on a quad core Intel Xeon Haswell

Bibliography

[1] JS. Camier, ∇-Nabla: A Numerical-Analysis Specific Language for Exascale Scientific Applications, SIAM PP14, www.nabla-lang.org, 2014,
www.nabla-lang.org.

[2] Gilles Grospellier and Benoit Lelandais, The arcane development framework, Proceedings of the 8th Workshop on Parallel/High-Performance
Object-Oriented Scientific Computing (New York, NY, USA), POOSC ’09, ACM, 2009, pp. 4:1–4:11.

[3] Marc Pérache, Hervé Jourdren, and Raymond Namyst, MPC: A Unified Parallel Runtime for Clusters of NUMA Machines, Proceedings of the 14th
International Euro-Par Conference on Parallel Processing, Euro-Par’08, 2008.

∇-Lulesh Speedup on XeonPHI (KNC)

Figure 4: Reference (ref.), Optimized (Optim.) and ∇ Lulesh Performances
Tests on Intel Xeon PHI with the C/C++ Standalone OKINA+OpenMP Back-
end and AVXMIC Intrinsics

Figure 5: ∇-Lulesh Speedups on Intel Xeon PHI:

Discussion and Future Work

⇒ These results emphasize the opportunity for DSL!
⇒ Doing so opens up a potential path forward for

for enhanced expressivity and performance.
⇒ ∇ raises the loop-level’s abstractions, allowing

to be prepared to address future systems.
⇒ There is no need to choose today the best

programming model for tomorrow’s architectures.

www.nabla-lang.org

∇ is open-source, ruled by the French CeCILL license,
which is a free software license, explicitly compatible with
the GNU GPL.

LULESH HYDRO MNLDDFV Schrödinger CoMD SPH

