
∇-Nabla:
A Numerical-Analysis Specific Language
for Exascale Scientific Applications

PPSC 2014 | JS. Camier

CEA, DAM, DIF F-91297, Arpajon France

Portland OR, February 2014

Introduction

Background → Transposed to HPC

7 years of HW design and engineering
Think: ”simulate/validate, synthesis, place & route”
A single source for multiple computer architectures

3 years of Real-Time Critical Systems development and methodology

Objectives/Roadmap since 2009

Improve mathematicians’ and numerical scientists’ productivity throughput

Provide portable/adaptable/maintainable scientific applications

Target a variety of today and future architectures

CEA | Portland OR, February 2014 | PAGE 1/20

Outline

1 Code Development Strategy And Methodology

2 ∇’s Parallel Programming Approach

3 HyODA Debugging and Profiling Toolset

4 ∇ Proxy Applications Performance Tests

5 Conclusions and perspectives

CEA | Portland OR, February 2014 | PAGE 2/20

∇ Code Development Strategy

⇒ Proposition of the ∇ Domain Specific Language Toolchain

Raise the level of abstraction: (superset of a subset of C)-to-source generation

Address effective use of existing and fore-coming SW/HW stacks

Provide a Bottom-UP component approach that targets:
Existing middlewares (mine, yours, native open ones, . . .)
Hetrogeneous Executions models

Allow to expose additional concurrency

Exploit algorithmic or low-level resiliency techniques
CEA | Portland OR, February 2014 | PAGE 3/20

∇ Code Development Methodology

CEA | Portland OR, February 2014 | PAGE 4/20

Outline

1 Code Development Strategy And Methodology

2 ∇’s Parallel Programming Approach

3 HyODA Debugging and Profiling Toolset

4 ∇ Proxy Applications Performance Tests

5 Conclusions and perspectives

CEA | Portland OR, February 2014 | PAGE 5/20

∇ Parallel Programming Approach (1/2)

Libraries, Options and mesh variables items declaration:

Data-parallelism is implicitely expressed via underlying items of jobs

Tasks-parallelism is explicitely declared via logical time
the @ statements ensure a partial order
MPMD concurency is reached by construction

Consistency and liveliness can be analysed and prooved offline

Optimization and characterization stages are inserted before generation
loop fusion, data structures, prefetching, caches awareness, vectorization

CEA | Portland OR, February 2014 | PAGE 6/20

∇ Parallel Programming Approach (2/2)

⇒

CEA | Portland OR, February 2014 | PAGE 7/20

Outline

1 Code Development Strategy And Methodology

2 ∇’s Parallel Programming Approach

3 HyODA Debugging and Profiling Toolset

4 ∇ Proxy Applications Performance Tests

5 Conclusions and perspectives

CEA | Portland OR, February 2014 | PAGE 8/20

Hybrid Online Debugger Architecture

HyODA does not replace a debugger at instructions level
Debugging concepts are raised at ∇’s level of abstraction

Variables, mesh, cells, listing, profiling sumary in situ analysis
Matrix gathered view via third party tools (Mathematica, Matlab, SciLab)
Hybrid: 1 TCP socket hooked on a single core + MW’s communication layer

CEA | Portland OR, February 2014 | PAGE 9/20

Outline

1 Code Development Strategy And Methodology

2 ∇’s Parallel Programming Approach

3 HyODA Debugging and Profiling Toolset

4 ∇ Proxy Applications Performance Tests

5 Conclusions and perspectives

CEA | Portland OR, February 2014 | PAGE 10/20

Main Proxy Applications ported to ∇

LULESH HYDRO Schrödinger CoMD

CEA | Portland OR, February 2014 | PAGE 11/20

LULESH - Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics

LULESH

Proxy application in DOE co-design efforts for exascale

Has been ported to a number of programming models

Has been optimized for a number of advanced platforms

∇-LULESH

LULESH serial reference has been correctly ported

∼3k sloc serial programing model vs ∼1k sloc w/o comments

Differents backends are then available:
myMiddleware with Threads, MPI, MPI+Threads, MPC
Cuda: single-node code generation
Native + (OpenMP or Cilk+) with no-vec, SSE, AVX or MIC
Yours . . .

Full intrinsics code generation

Introduced binary selection operator
lhs = (test)?value; (no ternary ’:’ !)

CEA | Portland OR, February 2014 | PAGE 12/20

∇-LULESH Comparative Performance Test on Intel® Xeon
Sandy Bridge�

CEA | Portland OR, February 2014 | PAGE 13/20

∇-LULESH Comparative Performance Test on Intel® XeonPhi�

CEA | Portland OR, February 2014 | PAGE 14/20

∇-LULESH Speedup on single Intel® XeonPhi�

CEA | Portland OR, February 2014 | PAGE 15/20

∇-LULESH Comparative Performance Test on NVIDIA® Tesla�
Fermi M2090

CEA | Portland OR, February 2014 | PAGE 16/20

∇-LULESH Best Comparative Architectures Performance Test

CEA | Portland OR, February 2014 | PAGE 17/20

Outline

1 Code Development Strategy And Methodology

2 ∇’s Parallel Programming Approach

3 HyODA Debugging and Profiling Toolset

4 ∇ Proxy Applications Performance Tests

5 Conclusions and perspectives

CEA | Portland OR, February 2014 | PAGE 18/20

Conclusions and perspectives

Conclusions

DSL proposition: simple, synthetic, performant (shown here on LULESH)

Raises the level of abstraction
Improves productivity throughput
Provides portable scientific applications on different computer architectures
Introduces logical time and new statements to address more concurrency

Ready to tackle the new computer science challenges ahead

Perspectives

∇ DSLanguage Specifications

New code developments:
Backends: KokkosArray, OpenCL, PGAS, etc.
Techniques: for resilient OS/runtime systems
Proxy applications: ports and performance evaluations

Open Source: www.sourceforge.org/?, www.nabla?.?

CEA | Portland OR, February 2014 | PAGE 19/20

Direction des applications militaires
Département sciences de la simulation et
de l’information
Service numérique environnement et
constantes

Commissariat à l’énergie atomique et aux énergies alternatives
Centre DAM-Ile de France - Bruyères-le-Châtel 91297 Arpajon Cedex
T. +33 (0)1 69 08 66 30 | F. +33 (0)1 69 08 66 30
Établissement public à caractère industriel et commercial
RCS Paris B 775 685 019

	Code Development Strategy And Methodology
	's Parallel Programming Approach
	HyODA Debugging and Profiling Toolset
	 Proxy Applications Performance Tests
	Conclusions and perspectives

